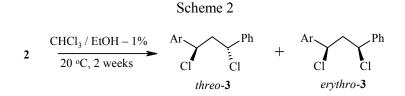
# REACTIONS OF γ-SULTINES WITH ELECTROPHILIC REAGENTS. 4\*. CHLORINATION OF 5-(4-METHOXYPHENYL)-3-PHENYL-1,2-OXATHIOLANE 2-OXIDE

## E. V. Grigor'ev, L. G. Saginova, and I. Yu. Kleimenova

We have studied chlorination of 5-(4-methoxyphenyl)-3-phenyl-1,2-oxathiolane 2-oxide and we discuss possible mechanisms for this reaction.

**Keywords:** 1,3-diaryl-1,3-dichloropropanes, 1,3-diaryl-3-chloropropanesulfonyl chloride, diastereomers, 1,2-oxathiolane 2-oxides (γ-sultines), diastereoselectivity, chlorination.

We reported earlier [1] on the different behaviors of 3,5-diaryl-1,2-oxathiolane 2-oxides ( $\gamma$ -sultines) under chlorination conditions, depending on the nature of the aryl substituents. In this paper, we report on the results of chlorination of an asymmetrically substituted  $\gamma$ -sultine: 5-(4-methoxyphenyl)-3-phenyl-1,2-oxathiolane 2-oxide (1). The reactions of sultine 1 with chlorine and sulfuryl chloride were conducted under the same conditions as in [1]. Sultine 1 was used in the reaction both as a mixture of diastereomers **A-D** and as the pure *cis,cis* diastereomer **A** [2]. The progress of the reaction was monitored and the reaction mixture was analyzed as described in [1].


The reaction of diastereomer **A** of sultine **1** with a chlorine solution in chloroform at 0°C leads to formation of a 95% mixture of diastereomers  $(1R^*, 3R^*):(1R^*, 3S^*)$ , 85:15, 3-chloro-3-(4-methoxyphenyl)-1-phenylpropanesulfonyl chloride (**2**) and 5% *threo*-1,3-dichloro-1-(4-methoxyphenyl)-3-phenylpropane (**3**) (see Table 1 and Scheme 1).

Scheme 1

\* For Communication 3, see [1].

M. V. Lomonosov Moscow State University, Moscow 119899, Russia; e-mail: saginova@org.chem.msu.ru, evg@org.chem.msu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1402-1408, September, 2003. Original article submitted January 15, 2001.

Subsequently holding the reaction mixture in chloroform containing 1% ethanol at 20°C for 2 weeks led to formation of a mixture of diastereomers of dichloride **3** (*threo:erythro* = 57:43) (see Scheme 2). Furthermore, in the <sup>1</sup>H NMR spectrum we observed signals for 3-chloro-1-ethoxy-1-(4-methoxyphenyl)-3-phenylpropane (4), a slight amount of which was formed.



Chlorination of the mixture of diastereomers A-D of sultine 1 under the same conditions leads to a similar result (see Table 1). Subsequently holding the reaction mixture for 1 week at 0°C led to formation of 88% equimolar mixture of diastereomers of sulfonyl chloride 2 and 12% equimolar mixture of diastereomers of dichloride 3 (Table 1). Holding the diastereomeric mixture of sulfonyl chloride 2  $(1R^*, 3R^*)$ : $(1R^*, 3S^*) = 75:25$  in ethanol at 20°C for 2 weeks led to an equimolar mixture of diastereomers of 3-chloro-1-ethoxy-1-(4-methoxyphenyl)-3-phenylpropane (4) (Scheme 3).

### Scheme 3

2 
$$EtOH$$
  
20 °C, 2 weeks  $Ar \rightarrow Ph$   
 $OEt Cl$   
 $1R^*, 3R^* : 1R^*, 3S^* = 75 : 25$   
 $1R^*, 3R^* : 1R^*, 3S^* = 47 : 53$   
4

From the results obtained it follows that chlorination of sultine 1 occurs stereoselectively. Using a substrate enriched in diastereomer A leads to preferential formation of  $(1R^*, 3R^*)$ -sulfonyl chloride 2, which is racemized on standing in solution and in this case decomposes to a mixture of diastereomers of dichloride 3, while in the presence of excess ethanol it goes to ethoxy derivative 4.

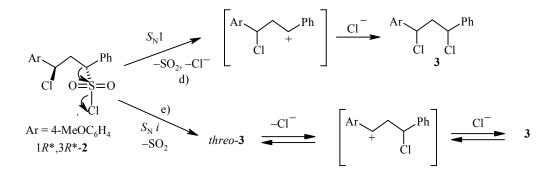
| Diastereomeric composition<br>of sultine 1, %           | Composition<br>of reaction mixture, %         | Stereochemical composition<br>of reaction mixture, %                                       |
|---------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|
| <b>A</b> , 100*                                         | <b>2</b> ; 95                                 | 1 <i>R</i> *,3 <i>R</i> *:1 <i>R</i> *,3 <i>S</i> *, 85:15<br>threo 100                    |
| <b>A</b> : <b>B</b> : <b>C</b> : <b>D</b> = 55:32:11:2* | <b>3</b> ; 5<br><b>2</b> ; 97<br><b>3</b> ; 3 | 1 <i>R</i> *,3 <i>R</i> *:1 <i>R</i> *,3 <i>S</i> *, 75:25<br>threo 100                    |
| $A:B:C:D = 55:32:11:2^*, *^2$                           | 2; 88<br>3; 6                                 | 1 <i>R</i> *,3 <i>R</i> *:1 <i>R</i> *,3 <i>S</i> *, 50:50<br>threo:erythro, 50:50         |
| <b>A</b> , 100* <sup>3</sup>                            | 2; 94<br>3; 6                                 | 1 <i>R</i> *,3 <i>R</i> *:1 <i>R</i> *,3 <i>S</i> *, 50:50<br><i>threo:erythro</i> , 46:54 |
| $A:B:C:D = 86:4:8:2^{*3}$                               | 2; 88<br>3; 12                                | 1 <i>R</i> *,3 <i>R</i> *:1 <i>R</i> *,3 <i>S</i> *, 50:50<br><i>threo:erythro</i> , 65:35 |

TABLE 1. Chlorination of  $\gamma$ -Sultine 1 by Chlorine and Sulfuryl Chloride at 0°C for 24 h

\* Reagent = chlorine.

 $*^2$  Reaction time = 1 week.

 $*^3$  Reagent = sulfuryl chloride.


The reaction of sultine 1 with sulfuryl chloride under similar conditions occurs nonstereoselectively, with formation of an equimolar mixture of diastereomers of sulfonyl chloride 2 (see Table 1). The data obtained can be illustrated by Schemes 4 and 5.

## Scheme 4



The reaction of sultine 1 with chlorine or sulfuryl chloride begins with electrophilic attack on the lone electron pair of the sulfur atom. The cationic cyclic intermediate formed can undergo nucleophilic attack at the  $C_{(5)}$  atom (route *a*) or else ring opening can occur with formation of an open-chain stabilized carbocation of the anisyl type (route *b*). The direction of reaction *a*) suggests formation of sulfonyl chloride **2** with inversion of the configuration of the  $C_{(5)}$  atom and retention of the configuration of the  $C_{(3)}$  atom of the sultine ring. When diastereomer **A** of sultine **1** is used, which has the relative configuration ( $2R^*, 3R^*, 5S^*$ ), direction *a*) leads to formation of the diastereomer ( $1R^*, 3R^*$ )-**2**, as shown in Scheme 4. The data obtained allow us to hypothesize that the reaction with chlorine occurs stereoselectively along direction *a*), due to the sufficient nucleophilicity of the chloride anion and activity of the anisyl center in the nucleophilic substitution reaction. A fairly small amount of diastereomer ( $1R^*, 3S^*$ )-**2** is formed, probably as a result of realization of the competing direction of reaction *b*), and also as a result of racemization of the initially formed diastereomer ( $1R^*, 3R^*$ )-**2** along route *c*).

Scheme 5



| Compound                              |                                                                            | Chemical shifts, $\delta$ , ppm (J, Hz)                                                                             |                                                              |                           |                                                                                                 |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
|                                       | CH <sub>2</sub>                                                            | CHCl                                                                                                                | CHS                                                          | CH <sub>3</sub> O (3H, s) | CH <sub>Ar</sub>                                                                                |  |  |  |  |
| (1 <i>R</i> *,3 <i>R</i> *)- <b>2</b> | $3.16^*$ (1H);<br>$3.35^*$ (1H), ${}^2J_{AB} = 14.0$                       | 4.69 (1H, dd,<br>${}^{3}J_{AM} = 10.2, {}^{3}J_{BM} = 5.8$ )                                                        | 4.40 (1H, dd,<br>${}^{3}J_{AX} = 4.2, {}^{3}J_{BX} = 10.0$ ) | 3.84                      | 6.93 (2H, d); 7.18 (2H, d), ${}^{3}J = 8.8$<br>7.30-7.60 (5H, m)                                |  |  |  |  |
| (1 <i>R</i> *,3 <i>S</i> *)- <b>2</b> | 2.90* (1H);<br>3.30* (1H), ${}^{2}J_{AB} = 14.4$                           | 5.16 (1H, dd, ${}^{3}J_{AM} = 11.6$ ,<br>${}^{3}J_{BM} = 3.6$ )                                                     | 4.55 (1H, dd,<br>${}^{3}J_{AX} = 2.8, {}^{3}J_{BX} = 11.2$ ) | 3.81                      | 6.90 (2H, d); 7.26 (2H, d), ${}^{3}J = 8.4$ ;<br>7.30-7.60 (5H, m)                              |  |  |  |  |
| threo-3                               | 2.71* <sup>2</sup> (2H)                                                    | 5.20* <sup>3</sup> (2H)                                                                                             | _                                                            | 3.82                      | 6.90 (2H, d)                                                                                    |  |  |  |  |
| erythro- <b>3</b>                     | 2.69* <sup>2</sup> (1H);<br>3.00* <sup>2</sup> (1H), ${}^{2}J_{AB} = 14.2$ | 4.80 (1H, dd, ${}^{3}J_{AX} = 6.8$ , ${}^{3}J_{BX} = 8.4$ );<br>4.85 (1H, dd, ${}^{3}J_{AY} = {}^{3}J_{BY} = 7.6$ ) | —                                                            | 3.83                      | 6.92 (2H, d); 7.32 (2H, d);<br>7.33 (2H, d), <sup>3</sup> <i>J</i> = 8.8;<br>7.35-7.45 (10H, m) |  |  |  |  |

TABLE 2. <sup>1</sup>H NMR Spectra of Compounds 2 and 3

\* AB part of the ABMX system.
\*<sup>2</sup> AB part of the ABXY system.
\*<sup>3</sup> XY part of the ABXY system.

TABLE 3. <sup>13</sup>C NMR Spectra of Compounds 2 and 3

| 0 1                                                                            | Chemical shifts, δ, ppm |                               |                |                   |                                                                                  |                                                   |  |  |
|--------------------------------------------------------------------------------|-------------------------|-------------------------------|----------------|-------------------|----------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| Compound                                                                       | CH <sub>2</sub>         | CHCl                          | CHS            | CH <sub>3</sub> O | CH <sub>Ar</sub>                                                                 | $C_{Ar}$                                          |  |  |
| (1 <i>R</i> *,3 <i>R</i> *)- <b>2</b><br>(1 <i>R</i> *,3 <i>S</i> *)- <b>2</b> | 40.00<br>39.88          | 58.60<br>59.64                | 78.71<br>79.63 | 55.47<br>55.47    | 114.66, 128.49, 129.51, 130.24, 130.79<br>114.39, 128.19, 129.58, 130.27, 130.75 | 129.36, 130.42, 160.37<br>129.09, 131.95, 160.15  |  |  |
| <b>3</b> , threo + erythro                                                     | 49.53,<br>49.62         | 60.22, 60.37,<br>60.80, 60.92 |                | 55.44             | 114.27, 114.32, 127.13, 127.15, 128.43, 128.49, 128.74, 128.82, 128.94, 128.95   | 132.24, 132.95, 140.29, 140.87,<br>159.85, 159.93 |  |  |

| Compound                              |                                                        | Chemical shifts, $\delta$ , ppm ( <i>J</i> , Hz)                 |                                                                   |                   |                                      |                                                                                                       |                                                                                 |  |  |
|---------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
|                                       | CH <sub>2</sub>                                        | CHCl                                                             | CHO (4), CHS (5)                                                  | CH <sub>3</sub> O | CH <sub>3</sub>                      | CH <sub>2</sub> O (4), CH <sub>2</sub> N (5)                                                          | CH Ar                                                                           |  |  |
| (1 <i>R</i> *,3 <i>R</i> *)- <b>4</b> | 2.31 (2H, m)*                                          | 5.23 (1H, dd,<br>${}^{3}J_{AM} = 4.0,$<br>${}^{3}J_{BM} = 10.0)$ | 4.56 (1H, dd,<br>${}^{3}J_{AX} = 4.0,$<br>${}^{3}J_{BX} = 8.8)$   | 3.81<br>(3H)      | 1.14<br>(3H, t,<br>${}^{3}J = 7.0$ ) | $3.37 (1H)^{*2};$<br>$3.44 (1H), {}^{2}J_{AB} = 9.4,$<br>${}^{3}J_{AX} = {}^{3}J_{BX} = 7.2$          | 6.88 (2H, d);<br>6.89 (2H, d);<br>7.20 (2H, d)                                  |  |  |
| (1 <i>R</i> *,3 <i>S</i> *)- <b>4</b> | 2.25 (1H);<br>2.70 (1H),<br>${}^{2}J_{AB} = 14.4*$     | 4.89 (1H, dd,<br>${}^{3}J_{AM} = {}^{3}J_{BM} = 7.6$ )           | 4.05 (1H, dd,<br>${}^{3}J_{AX} = 5.6$ ,<br>${}^{3}J_{BX} = 8.4$ ) | 3.81<br>(3H)      | 1.21<br>(3H, t,<br>${}^{3}J = 7.0$ ) | 3.14 (1H)* <sup>2</sup> ;<br>3.28 (1H), ${}^{2}J_{AB} = 9.4$ ,<br>${}^{3}J_{AX} = {}^{3}J_{BX} = 7.2$ | 7.24 (2H, d);<br>7.30-7.40 (10H, m)                                             |  |  |
| (1 <i>R</i> *,3 <i>R</i> *)- <b>5</b> | 2.93 (1H);<br>3.14 (1H),<br>${}^{2}J_{AB} = 14.0*$     | 4.75 (1H, dd,<br>${}^{3}J_{AX} = 9.6,$<br>${}^{3}J_{BX} = 6.4$ ) | $3.83 (1H, dd, {}^{3}J_{AM} = 4.8, {}^{3}J_{BM} = 11.0)$          | 3.82<br>(3H, s)   | 0.94<br>(6H, t,<br>${}^{3}J = 7.2$ ) | 2.87<br>(4H, br. q,<br>${}^{3}J = 7.2$ )                                                              | 6.89 (2H, d);<br>7.19 (2H, d), <sup>3</sup> <i>J</i> = 8.8<br>7.30-7.50 (5H, m) |  |  |
| (1 <i>R</i> *,3 <i>S</i> *)- <b>5</b> | 2.73 (1H);<br>3.07 (1H),<br>${}^{2}J_{AB} = 14.4^{*3}$ | 4.47 (1H, dd, ${}^{3}J_{AX}$<br>4.49 (1H, dd, ${}^{3}J_{AY}$ =   |                                                                   | 3.79<br>(3H, s)   | 1.02<br>(6H, t,<br>${}^{3}J = 7.2$ ) | 2.99<br>(4H, br. q,<br>${}^{3}J = 7.2$ )                                                              | 6.85 (2H, d);<br>7.23 (2H, d), <sup>3</sup> J = 8.8<br>7.30-7.50 (5H, m)        |  |  |

TABLE 4. <sup>1</sup>H NMR Spectra of Compounds 4 and 5

\* AB part of the ABMX system.
\*<sup>2</sup> AB part of the ABX<sub>3</sub> system.
\*<sup>3</sup> AB part of the ABXY system.

TABLE 5. <sup>13</sup>C NMR Spectra of Compounds 4 and 5

|                                                                       | Chemical shifts, δ, ppm |                 |                    |                   |                 |                                                                  |                                                                                         |                                                      |
|-----------------------------------------------------------------------|-------------------------|-----------------|--------------------|-------------------|-----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|
| Compound                                                              | $\mathrm{CH}_2$         | CHCI            | CHO (4)<br>CHS (5) | CH <sub>3</sub> O | CH <sub>3</sub> | CH <sub>2</sub> O ( <b>4</b> )<br>CH <sub>2</sub> N ( <b>5</b> ) | CH <sub>Ar</sub>                                                                        | $C_{Ar}$                                             |
| <b>4</b><br>(1 <i>R</i> *,3 <i>R</i> *) + (1 <i>R</i> *,3 <i>S</i> *) | 48.25,<br>48.63         | 60.33,<br>60.77 | 78.16,<br>78.93    | 55.40             | 15.44,<br>15.54 | 63.91,<br>64.32                                                  | 114.03, 127.18, 127.32,<br>127.83, 128.00, 128.43,<br>128.49, 128.74, 128.79            | 135.55, 134.31,<br>141.34, 142.02,<br>159.30, 159.42 |
| <b>5</b><br>(1 <i>R</i> *,3 <i>R</i> *) + (1 <i>R</i> *,3 <i>S</i> *) | 40.05,<br>40.37         | 59.96,<br>60.68 | 65.83,<br>66.35    | 55.43             | 14.84           | 42.52,<br>42.61                                                  | 114.17, 114.34, 128.23,<br>128.61, 128.94, 129.03,<br>129.22, 129.16, 129.73,<br>129.88 | 131.77, 132.69,<br>133.04, 133.10,<br>159.83, 159.97 |

The reaction of sultine 1 with sulfuryl chloride probably preferentially proceeds along route *b*), due to the low nucleophilicity of SO<sub>2</sub>Cl<sup>-</sup> and facile formation of the carbocation.

Conversion of sulfonyl chloride 2 to dichloride 3 during holding of the solution can occur in two directions (see Scheme 5). Route *e*) is preferred, since it suggests formation of a more stable carbocation and initial formation of dichloride 3 only as the *threo* diastereomer, which was always observed in chlorination of sulfane 1. The presence of a carbocation of the anisyl type is also confirmed by the fact that compound 4 is obtained in the reaction of sulfonyl chloride 2 with ethanol (Scheme 4). We could not isolate sulfonyl chloride 2 individually because of its instability. When treated with excess diethylamine in chloroform at a temperature of  $20^{\circ}$ C, it was converted to the corresponding N,N-diethylsulfamide 5 as an equimolar mixture of diastereomers (Scheme 6).

#### Scheme 6

2  $\xrightarrow{\text{Et}_2\text{NH}, \text{ excess}}_{\text{CHCl}_3, 20 \text{ oC}}$   $\xrightarrow{\text{Ar}}_{\text{Cl}} \xrightarrow{\text{Ph}}_{\text{SO}_2\text{NEt}_2}$ Ar = 4-MeOC<sub>6</sub>H<sub>4</sub> 5

Thus chlorination of compound **1** by chlorine, in contrast to 3,5-bis(4-methoxyphenyl)-1,2-oxathiolane 2-oxide, occurs stereoselectively with formation of the corresponding sulfonyl chloride **2**, as in the case of chlorination of 3,5-diphenyl-1,2-oxathiolane 2-oxide [1]. The reaction of sulfine **1** with sulfuryl chloride occurs nonstereoselectively and leads to formation of an equimolar mixture of diastereomers of sulfonyl chloride **2**.

## EXPERIMENTAL

The <sup>1</sup>H NMR spectra (400 MHz) and <sup>13</sup>C NMR spectra (100 MHz) were obtained on a Varian VXR 400 in CDCl<sub>3</sub> at 30°C. The IR spectra were obtained in a thin film on a UR-20 spectrophotometer.

**5-(4-Methoxyphenyl)-3-phenyl-1,2-oxathiolane 2-Oxide (1)** was obtained by reaction of the corresponding 1,2-diarylcyclopropane with sulfur dioxide according to the procedure in [2, 3].

**Chlorination of Sultine 1 by Chlorine (General Procedure).** A saturated solution of chlorine in chloroform was added with stirring to a solution of the sultine (0.3 mol) in chloroform (10 ml), cooled down to  $0^{\circ}$ C (the reaction time is indicated in Table 1). After the reaction was complete (monitored by TLC, Silufol support, eluent CCl<sub>4</sub>–CHCl<sub>3</sub>–ether, 4:1:1), the reaction mass was evaporated down and the reaction products were analyzed.

**Chlorination of Sultine 1 by Sulfuryl Chloride** (general procedure). A solution of sulfuryl chloride (1.4 mmol) in chloroform was added with stirring at  $0^{\circ}$ C to a solution of the sultine (0.7 mmol) in chloroform (10 ml). The reaction mixture was held at  $0^{\circ}$ C for 24 hours, then the mixture was evaporated down and analyzed.

 $(1R^*,3R^*)/(1R^*,3R^*)$ -3-Chloro-3-(4-methoxyphenyl)-1-phenylpropanesufonyl Chloride (2), yield 88-97%, unstable oil. The <sup>1</sup>H and <sup>13</sup>C NMR spectra are given in Tables 2 and 3.

*threo/erythro*-1,3-Dichlo-1-(4-methoxyphenyl)-3-phenylropropane (3). A solution of sulfonyl chloride 2 in chloroform was held at a temperature of 20°C for 2 weeks. The solvent was evaporated down and the residue was recrystallized from a 1:10 chloroform–pentane mixture. Grayish-white crystals with mp 81-38°C were obtained in 85% yield. Found, %: C 65.52; H 5.45.  $C_{16}H_{15}Cl_2O$ . Calculated, %: C 65.10; H 5.46. The <sup>1</sup>H and <sup>13</sup>C NMR spectra are given in Tables 2 and 3.

 $(1R^*,3R^*)/(1R^*,3S^*)$ -3-Chloro-1-ethoxy-1-(4-methoxyphenyl)-3-phenylpropane (4). A solution of sulfonyl chloride 2 in chloroform was mixed with excess ethanol at a temperature of 20°C and held for 2 weeks. After the solvent was removed, compound 4 was isolated as a yellow oil in 80% yield. Found, %: C 71.01; H 7.09. C<sub>18</sub>H<sub>21</sub>ClO<sub>2</sub>. Calculated, %: C 70.93; H 6.94. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are given in Tables 4 and 5.

 $(1R^*,3R^*)/(1R^*,3S^*)$ -N,N-Diethyl-3-chloro-3-(4-methoxyphenyl)-1-phenylpropanesulfamide (5). Excess diethylamine was added dropwise at a temperature of 20°C to a solution of sulfonyl chloride 2 in chloroform; this mixture was stirred for 5 h and then poured into cold acidified water and extracted with chloroform. The extract was washed with water until it tested neutral and then dried with CaCl<sub>2</sub>. After the solvent was removed, compound 5 was isolated by reprecipitation with hexane as a viscous yellow-brown mass in 60% yield. Found, %: C 61.38; H 6.69. C<sub>20</sub>H<sub>26</sub>ClNO<sub>3</sub>S. Calculated, %: C 60.67; H 6.62. IR spectrum (thin film), v, cm<sup>-1</sup>: 1333, 1140 (SO<sub>2</sub>). The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are given in Tables 4 and 5.

# REFERENCES

- 1. E. V. Grigor'ev, L. G. Saginova, and I. Yu. Kleimenova, *Khim. Geterotsikl. Soedin.*, 1053 (2003).
- 2. E. V. Grigor'ev, A. V. Yatsenko, N. V. Novozhilov, L. G. Saginova, and V. S. Petrosyan, *Vestn. Mosk. Univ., Ser. 2, Khimiya*, **34**, 87 (1993).
- 3. N. V. Novozhilov, E. V. Grigor'ev, L. G. Saginova, and V. S. Petrosyan, *Vestn. Mosk. Univ., Ser. 2, Khimiya*, **33**, 502 (1992).